To access the ‘Truss Store’ go to any of the computers at the building materials desk and click on Vendor Catalogs => Truss Store.

The Truss Store was designed for ease of use by team members and guests that may have no previous experience with trusses. Each screen will have help prompts such as pictorials and information.

1. Please click on the Product Information and review all the information available to you and the guest.
2. Please click on shop In-Stock Trusses and check out all we have to offer for immediate pick up at plant or shipment.
3. Please click on the shop Built to Order Trusses and check out all the different truss styles in the truss library. Try quoting 6 different types of trusses at this time.
Anywhere you see a “?” there is additional information that can assist you and the guest.

When you are going through a custom truss it will ask all the questions the system will need to see if that truss is available in the library for immediate pricing or will help you send up the custom request if not. When you click on each question a help will appear on the right of the screen. (Remember to maximize the screen)

Once you have selected the truss with pricing either In-stock or Custom the guest will select a delivery option.

Pick up at plant – Great option when the guest has the equipment to do this and needs them now.

Pick up at store – This option can be given for the trusses under 40’ in span and under 8’6” in height. This option would be chosen if the guest will have them delivered by the store hauler and the additional delivery fee will be added at the store.

Delivered to Jobsite – This option would be given for trusses over what is allowed to ship to store. Once selected the guest would take the order to the delivery coordinator at the store to set up the jobsite.

As long as you select the available delivery option, the guest would like, the Truss Store will pick the correct sku for that In-stock or Custom Truss.
This is a great program that allows you and the guest to shop through millions of predesigned trusses and a large percentage of the time receive an immediate price. If a guest is shopping online there is an option to “chat” with someone at the truss plant or “leave a message” and we can assist them.

If you have any questions or need assistance in selling trusses you can contact your Truss Sales Representative for your area or dial 715-876-3204.

Please use this great tool and enjoy the rest of your technical training on trusses!
Effective 1 May 2015

Local Building Code or Inspectors.

Verify All Loads and Codes with

Estimated Ground Snow Loads by State
TRUSS TERMINOLOGY

Bottom Chord: A horizontal or inclined (e.g., Scissors truss) member that establishes the lower edge of a truss, usually carrying combined tension and bending stresses.

Butt Cut: Slight vertical cut at outside edge of truss bottom chord made to insure uniform nominal span. (Usually ¼ inch.)

Cantilever: The condition where both top and bottom chords extend beyond a support with no bearing at the extended end.

Chase Opening: An open panel in a floor truss for the purpose of running utilities through it such as heating and air conditioning ducts.

Clear Span: Horizontal distance between interior edges of supports.

Concentrated Load: Superimposed load centered at a given point; (e.g., roof mounted air conditioners).

Dead Load: Any permanent load such as the weight of the truss itself, purlins, sheathing, roofing, ceiling, etc.

Deflection: Movement of a truss (when in place) due to dead and live loads.

Design Loads: The dead and live loads which a truss is designed to support.

Fascia: Trim board applied to ends of overhang.

Heel: Point on a truss at which the top and bottom chords intersect.

Heel Height: Height of truss at end of span (not including overhangs) = Plumb cut + Butt cut.

Interior Bearing Truss: Truss with structural support in the interior truss span as well as at end points.

Lateral Brace: A member placed and connected at right angles to a chord or web member of a truss, (Three trusses continuous required).

Live Load: Any loading which is not of a permanent nature, such as snow, wind, temporary construction loads, etc.

Overhang: The extension of the top chord of a truss beyond the bearing support.

Peak: Point on a truss where the sloped top chords meet.

Plumb Cut: Top chord cut to provide for vertical (plumb) installation of fascia.

Reaction: Total load transmitted to its support by a given truss.

Sealed Drawings: Drawings prepared, checked, and/or approved by and having the seal of a registered professional architect or engineer.

Slope: (Pitch) The inches of vertical rise in 12 inches of horizontal run for inclined members (generally expresses as 3/12, 4/12, 5/12, etc.).

Square Cut: End of top chord cut perpendicular to the slope of member.

Top Chord: An inclined or horizontal member that establishes the upper edge of a truss, usually carrying compression and bearing stresses.

Uniform Load: A total load that is equally distributed over a given length, usually expressed in pounds per linear foot (PLF).

Valley: A depression in a roof where two roof slopes meet.

Webs: Members that join the top and bottom chords to form the triangular patterns that give truss action, usually carrying tension or compression stresses (no bending).
TRUSS COMPONENTS AND LOAD DESCRIPTIONS

- Truss Material, Roofing Materials = P.S.F. Dead Load
- Rain, Wind, Snow, Ice = P.S.F. Dead Load
- Truss Material, Ceiling Materials = P.S.F. Ceiling Load

* P.S.F. = Pounds per Square Foot
SIMPLE TRUSS FACTS

Think of trusses as the cap of any building. Trusses take the place of a hand frame rafter roof system and have specific engineering loads that a rafter system does not have. Trusses must rest on a true bearing. A valid bearing is one that starts below the frost line and is sized to support the roof loading required. A blue print will indicate each foundation footing location.

Once you establish your bearing walls: The length of the bottom chord will be your truss span. The width of the plate the truss rests on will be 3½" unless indicated differently. The slope of the top or bottom chord is the “Rise Over Run” in inches.
TRUSS DESIGNS

Trusses are engineered to meet desired loading and spacing requirements. Load and spacing requirements will be determined by the local building official responsible for the inspection of the building. Trusses are designed using an engineering system that specifies lumber grades and plate sizes to be used when building the truss. Each piece of lumber and plate are considered component parts of the completed truss. None of these components can be damaged or modified in any way unless directed by a structural engineer. If a truss becomes damaged, or requires modification, call MM Truss and send a drawing showing an exact description of the truss and the damage or modification. The engineer will then work up a “repair detail” showing the exact steps required to repair the damaged truss. Note: The party responsible for the damage or modification required is responsible for the engineering fee, this is why it is very important for your yard Team Members and your Guest to inspect trusses as they are received to verify that no damage has been done at time of delivery.

To get spec sheets on a truss that has already been verified and built you can find them in the Centralized Inquiry System (CIS).

If you have a guest looking to match an existing truss go to the ‘Match existing truss’ in the online Truss Store and print out the sheet for the guest to fill out.

Large and odd sized trusses can be accommodated at MM Truss. They are generally designed & shipped in sections with special engineering that allows them to be assembled on site. Larger trusses that require a field splice will carry with them proper directions and materials to be used.
BEARING WALL SIZE
WHY IS THE SIZE OF THE WALL IMPORTANT?

DESIGNED LOADS ARE EXPRESSED AS follows:

- 42# PSF Live Load Top Chord (LLTC)
- 10# PSF Dead Load Top Chord (DLTC)
- 10# PSF Dead Load Bottom Chord (DLBC)
- 62# Total Designed Load (TOTAL)

Pounds PSF will change with different zones and building codes or consumer wishes.

Examples:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLTC</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>40</td>
<td>24</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>DLTC</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>DLBC</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>55</td>
<td>29</td>
<td>37</td>
<td>33</td>
</tr>
</tbody>
</table>
In-Stock residential trusses: In-Stock residential trusses of various types are ready for immediate pickup at plant or shipment from the MM Truss plant. Midwest will maintain an inventory of In-Stock trusses for all Guests to order.

Studded end frames: Each building has an end. An end frame will rest 100% on a bearing wall and is not designed to clear span as it needs continuous bearing. Regular studded end frames will consist of a top chord, bottom chord, and studs 24" on center. Gable overhangs are nailed to the side of the top chord with a fascia board attached. Common for a 1' gable overhang. Dropped ends have the top chord lowered to allow 2×4 or 2×6 framing (as specified on S.O. contract by customer) to pass over the top chord and attach to the first common truss that is back 2' from the dropped end. This allows for a greater gable overhang and is structurally sound.

Cantilever Conditions: To accommodate design needs for level overhangs such as in patios, porches, entryways and other offsets in building elevations, the truss may be “cantilevered.” A cantilever occurs when the bearing falls inside the overall truss span. Variations of cantilever conditions may be achieved by use of methods available in the form of truss engineering. In ordering cantilevers, the cantilever dimension is the distance from the outside of the bearing wall to the end of the bottom chord. (See “A” below.) The overhang is the horizontal distance from the bottom chord butt cut to the outside edge of the top chord. (See “B” below.)

NOTE: By giving the dimension in (example “C”) the truss designer will not be able to make a determination of what the overhang or cantilever should be. This could cause an error to occur.
CANTILEVERS
THE PROPER WAY TO ORDER CANTILEVERED TRUSSES (ROOF AND FLOOR):
Energy truss: This is a truss designed to allow greater insulation depths at the bearing point by raising the truss heel height. It is normal to use different heel heights to meet the insulation requirement. The guest is to specify the energy heel height desired.

Scissor Truss: (Vaulted) A truss designed with a slope on the outside and inside. A building blue print may call for a vaulted ceiling over a given area. For design purposes, we recommend using half of the top slope of the top chord on the bottom chord. For a truss with a 4/12 top chord, we would recommend a 2/12 on the bottom chord. Normally, this is expressed as a 4 over a 2/12. Using half of the top slope assures load factors will be maintained.

Mono Truss: Used when adding on to an existing building. The highest point being at the existing wall.

Hip Sets: A hip roof is one that slopes from all sides. The system consists of a girder truss (normal set back is 8’), corner girder, corner jacks, and end jacks. There will be step down trusses from the girder truss to the peak. At the peak, common trusses are used to complete the run. See hip set page of MM price book for an example.

Valley Sets: Valley sets are used to form the ridge line and framing between the main and secondary roof structure, and can be common, dual pitch, or mono shaped in their design. Valley members may also be used for decorative gables, dormers, porches, etc. Flat top valley members are supplied when required for hip roof applications.

Room-in-Attic: Trusses that have a room within the truss. This design is very hard to engineer, due to a rectangle within a triangle. To allow for a usable room size, the top chord slope gets quite steep. Overhangs are often left off due to shipping heights. Delivery costs may be higher due to over height trusses.

NOTE: The maximum height of a truss that can be shipped to your store is 8’ 6” without special equipment such as a notch or Rollerdeck trailer.
Ridge Line: The Ridge line on a hip set runs from the bearing corner to a point that is \(\frac{1}{2} \) of the span. A bearing wall that is 30' wide will have a ridge that meets 15' from the center point. This is true for all slopes as long as all 3 pitches are the same. (Any time you have a 45° angle coming from a given base, the lines will intersect back \(\frac{1}{2} \) of the base.)

Beam/Girder Trusses: Beam trusses must be designed to span a given area with trusses coming in from the side and secured to the bottom chord. These may be 2 ply, 3 ply, or more depending on the load requirements. Beam trusses may also be designed to meet different bearing widths. 3½'' and 5½'' are minimum bearings. The girder truss is used to eliminate an interior load-bearing partition in L, T, U, and H-shaped houses by supporting the flush cut end of the main roof trusses at the intersection of the roofs.
GIRDER TIE-IN-SPAN
WHAT IS TIE-IN-SPAN?

In order to properly load girder trusses we need to know the tie-in-span. The tie-in-span is the length (span) of the trusses the girder is supporting.

The tie-in-span of the example above is 20' 0". This information is needed to process both quotes and orders.
Advantages of Floor Trusses Over Conventional Floor Framing

- Lower construction costs
- Engineered floor systems.
- Fewer pieces to handle & reduced installation time.
- Wide 3½" nailing surface for easy deck application.
- Eliminate notching and boring joists for plumbing and electrical wiring.
- 2×4 lumber offers better availability and less in-place cost than 2×8 or 2×10 joists.
- Factory manufactured components.
- Reduced heating, ventilation, air-conditioning, plumbing and sub-contractor time.
- Faster shell completion time.
- Greater flexibility for plumbing, duct work and electrical wiring.
- Clear span basements with no steel beams or posts.
- Ready to finish basement ceiling.
- Easier remodeling possibilities in moving interior walls.
- Engineered balcony cantilever designs.

DUCT CHART

<table>
<thead>
<tr>
<th>Overall Truss Depth</th>
<th>When Height (H) Equals</th>
<th>Diameter (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3"</td>
<td>4"</td>
</tr>
<tr>
<td>12"</td>
<td>32"</td>
<td>25"</td>
</tr>
<tr>
<td>13"</td>
<td>34"</td>
<td>28"</td>
</tr>
<tr>
<td>14"</td>
<td>36"</td>
<td>31"</td>
</tr>
<tr>
<td>15"</td>
<td>38"</td>
<td>33"</td>
</tr>
<tr>
<td>16"</td>
<td>40"</td>
<td>35"</td>
</tr>
<tr>
<td>17"</td>
<td>41"</td>
<td>37"</td>
</tr>
<tr>
<td>18"</td>
<td>42"</td>
<td>38"</td>
</tr>
<tr>
<td>19"</td>
<td>43"</td>
<td>38"</td>
</tr>
<tr>
<td>20"</td>
<td>44"</td>
<td>40"</td>
</tr>
<tr>
<td>21"</td>
<td>44"</td>
<td>40"</td>
</tr>
<tr>
<td>22"</td>
<td>45"</td>
<td>42"</td>
</tr>
<tr>
<td>23"</td>
<td>46"</td>
<td>43"</td>
</tr>
<tr>
<td>24"</td>
<td>46"</td>
<td>43"</td>
</tr>
</tbody>
</table>

2×6 Strong backs Required 10' On Center
FLOOR TRUSSES

These trusses take the place of a floor joist system.

Floor trusses offer these advantages:

1. No Cutting. Reduced installation time.
2. Clear span basement with minimal beams/posts.
3. Wide 3½" nailing surface. Less members.
4. **Lower Construction Costs.**
5. Plumbing / electrical placed inside webs.
6. Ready to finish ceiling.
7. Easier for Electricians, Plumbers, & HVAC Installers.

Top chord bearing has a double 2 × 4 top chord that will rest on your sill plate. It can be ordered with a block attached to raise the end to a desired height. Top or bottom chord bearing are equally as good.

In ordering floor trusses, we recommend that you subtract sheathing width from the outside of the truss. On top chord bearing trusses you must subtract ½" from the wall width on each side for clearance (bottom chord). The truss should not touch the inner wall. Trusses must move freely as loads change.

Any openings, such as a stairway, can be worked around by installing a double truss on each side. In other words, you have established a beam truss on each side. It is also a good idea to have the heating & A.C. subcontractor verify duct clearance before ordering. Midwest Manufacturing may be able to accommodate special order custom sized duct runs.
SPAN CHART FOR STIFFNESS/BOUNCE

MAXIMUM SPANS BELOW
- 4×2

TOTAL 55# PSF

LLTC= Live Load Top Chord (People, Furniture) = 40
DLTC= Dead Load Top Chord (Flooring Material) = 10
LLBC= Live Load Bottom Chord (Storage) = 0
DLBC= Dead Load Bottom Chord (Ceiling Material) = 5

<table>
<thead>
<tr>
<th>SPAN CHART FOR L/360</th>
<th>DEPTH</th>
<th>ON CENTER SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>4×2 WOOD</td>
<td>12"</td>
<td>16"</td>
</tr>
<tr>
<td>188-4167 *</td>
<td>9.25"</td>
<td>18' 2"</td>
</tr>
<tr>
<td>188-4170 *</td>
<td>11.25"</td>
<td>19' 4"</td>
</tr>
<tr>
<td>188-4173</td>
<td>12"</td>
<td>20' 4"</td>
</tr>
<tr>
<td>188-4199 *</td>
<td>14"</td>
<td>22' 7"</td>
</tr>
<tr>
<td>188-4212 *</td>
<td>16"</td>
<td>23' 0"</td>
</tr>
<tr>
<td>188-4238 *</td>
<td>18"</td>
<td>24' 3"</td>
</tr>
<tr>
<td>188-4254</td>
<td>20"</td>
<td>25' 6"</td>
</tr>
<tr>
<td>188-4270</td>
<td>22"</td>
<td>26' 9"</td>
</tr>
<tr>
<td>188-4296</td>
<td>24"</td>
<td>28' 2"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPAN CHART FOR L/480</th>
<th>DEPTH</th>
<th>ON CENTER SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>4×2 WOOD</td>
<td>12"</td>
<td>16"</td>
</tr>
<tr>
<td>188-4167 *</td>
<td>9.25"</td>
<td>16' 5"</td>
</tr>
<tr>
<td>188-4170 *</td>
<td>11.25"</td>
<td>18' 3"</td>
</tr>
<tr>
<td>188-4173</td>
<td>12"</td>
<td>19' 0"</td>
</tr>
<tr>
<td>188-4199 *</td>
<td>14"</td>
<td>20' 2"</td>
</tr>
<tr>
<td>188-4212 *</td>
<td>16"</td>
<td>21' 4"</td>
</tr>
<tr>
<td>188-4238 *</td>
<td>18"</td>
<td>22' 6"</td>
</tr>
<tr>
<td>188-4254</td>
<td>20"</td>
<td>23' 8"</td>
</tr>
<tr>
<td>188-4270</td>
<td>22"</td>
<td>25' 0"</td>
</tr>
<tr>
<td>188-4296</td>
<td>24"</td>
<td>26' 2"</td>
</tr>
</tbody>
</table>

* Depths available for custom trimmable floors.
* Custom trimmable floors can be Single or double end trimmable. Note on order.

Floor Truss Girders

Many building designs require Floor Truss Girders. Floor Truss Girders are most often used around stairway openings, open to below areas around Foyers and Great Rooms as well as for individual Point Loads. Midwest Manufacturing Truss Plant must quote floor Truss Girders on a case-by-case basis. Please call 1-715-876-3204 or 1-800-826-7126 for more information.

Effective 1 May 2015
POST FRAME TRUSSES

POST FRAME ROOF TRUSSES: Post frame is apart from conventional framing since it is of different design and use. This method is for ease of construction and is used for maintenance free, utility-type agricultural, residential, & commercial buildings. By using horizontal side and end girts and roof purlins, the trusses can be spaced farther apart to reduce the cost and still maintain design loads required. Common space of trusses will reach from 6', 8', and 9'. Several of our MM In-Stock Post Frame trusses have been designed to meet different loads at different spacings.

Due to the fact that overhangs are added at the time of erection, trusses are built with a heel to be covered by siding. The heel height is determined by the angle of cut of the bottom and/or top chord. Spec. sheets for trusses will indicate the purlin spacing for the top chord. Top and bottom chord bracing (purlins and lateral bracing) must be designed by the building designer who will determine size, orientation, etc... In this type of building it is common to have no ceiling and as a result, most trusses have no ceiling load designed in. If a ceiling is planned, the truss must have a bottom chord designed to carry the weight. Normal load is 5# PSF for a ceiling in a post frame designed truss.

<table>
<thead>
<tr>
<th>On Center Spacing</th>
<th>Ground Snow Load</th>
<th>Top Chord Live Load</th>
<th>Top Chord Dead Load</th>
<th>Bottom Chord Dead Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>9'</td>
<td>40# PSF</td>
<td>24# PSF</td>
<td>4# PSF</td>
<td>5# PSF</td>
</tr>
<tr>
<td>8'</td>
<td>50# PSF</td>
<td>30# PSF</td>
<td>4# PSF</td>
<td>5# PSF</td>
</tr>
<tr>
<td>6'</td>
<td>70# PSF</td>
<td>40# PSF</td>
<td>4# PSF</td>
<td>5# PSF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On Center Spacing</th>
<th>Ground Snow Load</th>
<th>Top Chord Live Load</th>
<th>Top Chord Dead Load</th>
<th>Bottom Chord Dead Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>9'</td>
<td>40# PSF</td>
<td>24# PSF</td>
<td>4# PSF</td>
<td>1# PSF</td>
</tr>
<tr>
<td>8'</td>
<td>50# PSF</td>
<td>30# PSF</td>
<td>4# PSF</td>
<td>1# PSF</td>
</tr>
<tr>
<td>6'</td>
<td>70# PSF</td>
<td>40# PSF</td>
<td>4# PSF</td>
<td>1# PSF</td>
</tr>
</tbody>
</table>

End frames for a post frame building should be supported by a post that is not more than 10 feet from another post. All door openings should have a post on each side, on end, or sidewalls.
PROBLEMS WITH OVERHANGS ON POST FRAME TRUSSES

1) OVERHANGS ON POST FRAME TRUSSES CAUSE EXTRA CUTTING AT SITE FOR FASCIAS.

2) OVERHANGS ON POST FRAME TRUSSES MAKE THEM MORE DIFFICULT TO TRANSPORT WITHOUT DAMAGING THE TRUSS.

Top chord extended leaves heel too tall for steel fascia.

Overhang Jack leaves heel correct size for steel fascia trim.
Why Midwest Columns?

Our columns are an engineered product. You know what you are getting and what the column is capable of withstanding before you install it. You don’t get that with a 4x6 or 6x6 piece of lumber.

It’s not just glue and finger joints holding these columns together. There are thread locked wires driven straight through the layers of these columns and then rivet clenched on both sides to provide superior holding power.

Our columns feature a 20 gauge stainless steel plate at all splice joints in the column. This provides maximum strength even at what would normally be the weakest point.

Our columns are straight. We use a hydraulic pressure system that generates hundreds of pounds of pressure over the entire length of the column to straighten it before it is manufactured.

Our columns are more versatile. We build columns up to 60’ or greater. Try getting a 6x6-60’ from your local lumber yard! We also provide multiple lumber grades so that your columns are built for your application. Not overbuilt or overpriced.

We use a galvanized thread lock wire in all areas of the column except for the treated portion that will contact the ground. This area gets coated stainless steel wire protection. Midwest columns can also be built with 4 or 5 plys of lumber.

Our columns are safer. They feature a pre-built notch. This allows for the truss to sit firmly in the column and eliminates the need to carry a chain saw up a ladder to notch the timber.

The nation’s leading nail manufacturer does not make a nail long enough to go completely through three layers of dimensional 2” lumber. Our process doesn’t need a nail because it makes its own. We drive all the way through the layers, making this the column you can count on!
Laminated Columns

Midwest Manufacturing produces rivet clinched laminated columns with steel reinforced joints as an option to replace treated square timbers as vertical supports in building construction. These laminated columns are manufactured using an automated nail machine that drives threaded nails formed from spiral shaped fluted low carbon steel wire. The machine automatically aligns the component members with its powerful clamping system, removing the normal warpage and pressing members firmly together while the threaded nails are driven. The rivet clinched threaded nails cannot back out.

Lifetime warranty with a .60# per cubic foot retention- more consistent penetration is obtained by individually treating the materials before lamination.

Uniformity in Assembly and strength- Southern Pine Lumber provides an assembly with more consistent strength and stiffness characteristics. Quality controlled factory production creates a consistently straight laminated column, thus a straighter walled building.

Strong truss to column connection- the bottom cord of the truss bears directly on the center member of the laminated column creating a positive connection between truss and laminated column, providing a strong junction which can eliminate the need for knee braces in some cases.

Manufactured to custom specifications- Custom fabrication allow the columns to be designed and manufactured for each individual building’s specifications, including the length, number of plys and dimensions of lumber used to build the column.
IN-STOCK LAMINATED COLUMNS
Available for immediate pick up at plant or shipment.

The In-Stock Column can be used with the below blocking to create up to 34’ end columns.

Found on the online Truss Store under product information
Mishandling of trusses may result in structural damage to truss.

ERECTING TRUSSES: The truss erector shall take the necessary precautions to insure that handling and erection procedures do not reduce the load carrying capacity of the truss. Trusses shall be installed plumb at specified spacing and in plane, that is, trusses will be properly aligned. A suggested procedure for lifting trusses is illustrated in Fig 1, if the truss does not exceed 30 feet.

For truss spans between 30 feet and 60 feet a suggested lifting is shown in Fig. 2. It should be note that the lines from the ends of the spreader bar “toe-in”.

For lifting trusses with spans in excess of 60 feet, it is recommended that a strong-back be used as illustrated in Fig. 3. The strong-back should be attached to the top chord and web members at intervals of approximately 10 feet.

Further, the strong backs should be at or above the mid-height of the truss so as to prevent overturning. The strong-back can be of any material with sufficient strength to safely carry the weight of the truss and sufficient rigidity to adequately resist bending of the truss.

NOTE: None of these techniques allow the truss to be lifted by the peak only.
Do not cut or alter truss without prior approval of a professional engineer.

Do not stack construction materials on floor or roof that induces load on truss greater than design loads.

Unless specifically noted, this truss is not applicable for use with fire retardant or preservative treated lumber.

Top chords must be sheathed throughout or purlins provided at prescribed spacing.

Anchorage and/or tie-in components are the responsibility of others unless shown.

Care should be exercised in Handling, Erection and Installation of trusses. Inspect all trusses before installing.

This truss designed at request and specifications of Guest as an individual building component, in a vertical plan to be incorporated into building design or the specification of a building designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure the stability during construction is the responsibility of the building designer. Design and materials are in accordance with the latest editions of NDS and/or TPI specifications. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Quality Control Manuals, Bracing for Wood Trusses & Recommended Code of standard Practice, available from: Truss Plate Institute, 583 D’Onofrio Drive, Madison, WI. 53719

--- CAUTION ---

BEARING POINTS

A Bearing Point is a structural support, usually indicated by a small cross section of a 2x4.

- Indicates bearing point.
- Tail of Overhang
- Do Not Bear on Tail

X = Bearing area. This is the only area at which a truss is designed to be supported, unless it is a cantilever truss. See Fig. 3

Bearing Points other than total spans will be noted with a stamp as to where bearing should be.

--- CAUTION ---

Figure 1

- RECOMMENDED
- A truss hanger to fasten truss to bearing wall. Many types available.

Unless otherwise noted by a stamp that says: “BEARING POINT HERE”, trusses manufactured by Midwest Manufacturing will bear at the point where the top chord meets the bottom chord. Fig 1 & 2.

Figure 2

- Lateral Bracing Required Here
- Stamped on Truss

Figure 3

- Lateral bracing noted on engineering drawing.
Include All Quote Numbers

The quote number is important. It tells us which designer did the quote, the date it was quoted, and the store that it was quoted to. The quote tells the designer exactly what trusses are being ordered, and the price the store was quoted. If there are two or more versions of the quote, please clarify which quote you are ordering.

If an order does not include the quote number, your order will be delayed.

Verification

Verify All Quotes and Orders with Your Guest.

When a quote asks for a Guest’s verification, be sure to verify the information requested with the Guest. If needed, have the Guest sign truss prints or layouts. Then indicate that the Guest verified the areas in question on the order. If the designer feels that the information requested was not verified, he may call your store for verification. To save time and expensive errors, make sure your Guest verifies the quote at the time of an order. The Guest then knows what they are buying.
WHAT CAN YOU DO TO HELP GET YOUR QUOTES BACK FASTER?

CAMERAS HAVE BEEN FURNISHED TO ALL MENARDS CCS DEPARTMENTS.

Following the guidelines in Policy and Procedure 16D, please photograph all blueprints and send them to Midwest Truss. This will result in the fastest turnaround time. You can also email PDF files to MM Truss. Send emails to: tdesign@midwestmanufacturing.com or upload file at hightail.com

Scan Quotes

Please scan quote requests instead of calling when possible.

Scan quote requests to truss specials office assistant in my mail. They are received directly in our Design Department. The first available designer will do the quote.

Feel free to call for quotes when your Guest is at the counter ready to purchase simple standard trusses such as 7/12, 8/12, etc., commons, scissors, & ends if it is not available in the online truss store.

Complex truss quote requests, such as a 23' 6" partial scissors with a 4' cantilever, must be run on the computer and in most cases takes more time than your Guest wants to wait at the counter. Please scan complex truss quote requests.

House Plans

Please email PDF of house plans if possible, otherwise use the camera option previously mentioned.
WHAT CAN YOU DO TO HELP GET YOUR QUOTES BACK FASTER?

Miscellaneous House Plans

We have various plans from these planning services listed, on hand & pre-quoted.

- Home Design Alternatives (HDA)
- Design Basics
- Complete Planning Services (CPS)
- Garlinghouse
- National Plan Services
- Home Planners Inc.

As we receive plans designed by these companies from the stores we add them to our library of plans. Before you E-Mail or send a set of plans designed by these companies, fax or call to see if we have the plan and/or quote on hand.

Include All Information on the Truss Request Form on Page 28.
Truss Request Form For Menards Stores

Guests Name: __________________________ Email: __________________________
Zip Code of project __________ Team Member __________________________
Project Start Date __________ Guests Phone # ______________
Store Number ______ Store Name __________________________

Ask for an Electronic copy (PDF if possible) of the plan. Forward PDF to MM Truss. Do not make copies of PDF and scan copies as they are hard to read.

Roof Truss Information
Determine if plan calls out trusses or hand framing. Trussing a hand framed plan may change the look of the building and ceilings.
Dimensions (Check one): Framing to framing _____ Sheeting to sheeting _____
Requested pitch(s)? _______ On multiple pitches do fascia lines match? __________
Are energy heels required? _______ Heel size requested. __________
Bearing wall size? _______ Overhang width: Eave ______ Gable ______
Are end trusses std. or dropped or vaulted? __________
Are all dimensions of vaults, trays or pans noted on plan? ________________
Are there different wall heights? _____ Are the height differences noted? _________
Does the plan call out LVL’s for roof and/or floor support? __________
Will the Menards store supply the called out LVL’s? ______________
Is there access (stairs or doorway) to all areas using RIA trusses? ______________
Are dormers on plan structural or cosmetic? __________
If there are skylights, do they fit between trusses? (22 ½” width or less) __________
Are valleys trussed or hand framed? ________________
Include Hip-blocking Frames for Hips with dropped top chords? ______
If fireplace(s) are structural (real stone, brick or mortar) are there footings? ______
Any appliances (furnaces, air conditioners) located IN or ON the trusses? ______
Multi-ply girders: Plied at the plant or will guest ply them at jobsite? ________________

Floor Truss Information
Quote requests for floor framing require a foundation plan that shows footings.
Usage of floor (Circle) – Residential, Office, Hotel, Church, Roof Deck, other?
Will floor trusses require hold-back on exterior walls for sheathing or insulation or both? ______ If yes, what is the hold-back? __________
Is a Duct Chase required? ______ (Location to be determined by guest & designer)
What is the depth and spacing requested for floor trusses or I-Joists? __________
Do any of the following apply: Tile floors, quartz or granite counter tops, large kitchen islands? (These may affect depth, spacing & loading of floor system) __________
Any Gypcrete on top of floor? _____ How thick? ______ Requested Deflection L_____
Special requests ________________

Effective 1 May 2015